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Abstract 
 

        Modern image inpainting techniques based on deep learning have achieved remarkable 

performance, and more and more people are working on repairing more complex and larger 

missing areas, although this is still challenging, especially for facial image inpainting. For a 

face image with a huge missing area, there are very few valid pixels available; however, people 

have an ability to imagine the complete picture in their mind according to their subjective will. 

It is important to simulate this capability while maintaining the identity features of the face as 

much as possible. To achieve this goal, we propose a three-stage network model, which we 

refer to as the identity and structure feature refinement network (ISFRNet). ISFRNet is based 

on 1) a pre-trained pSp-styleGAN model that generates an extremely realistic face image with 

rich structural features; 2) a shallow structured network with a small receptive field; and 3) a 

modified U-net with two encoders and a decoder, which has a large receptive field. We choose 

structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), L1 Loss and learned 

perceptual image patch similarity (LPIPS) to evaluate our model. When the missing region is 

20%-40%, the above four metric scores of our model are 28.12, 0.942, 0.015 and 0.090, 

respectively. When the lost area is between 40% and 60%, the metric scores are 23.31, 0.840, 

0.053 and 0.177, respectively. Our inpainting network not only guarantees excellent face 

identity feature recovery but also exhibits state-of-the-art performance compared to other 

multi-stage refinement models. 
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1. Introduction 

Image inpainting is a process used to fill in missing areas. The goal is to make modifications 

in an image that are semantically reasonable and more detailed. This process is similar to when 

humans visually observe a damaged image, and automatically imagine what the complete 

image looks like based on valid information. However, when the missing region is too large, 

the complete image looks like a blur or rough outline in our mind, or only the category of the 

image is known. Although the convolutional neural network model mimics the operation of 

the human brain, it also suffers from the problem of not being able to complement the image 

very well. The location, size and shape of the damaged area are arbitrary, and as the damaged 

area increases, the effective pixel information that can be used becomes insufficient. Therefore, 

when the missing region is large, it is still a great challenge to generate a more complete 

structure and more detailed and realistic content.  

        In recent years, especially after the emergence of generative adversarial network (GAN) 

[1] models, deep learning has achieved significant breakthroughs in the area of image 

inpainting. Image inpainting methods based on adversarial networks can learn effective high- 

and low-frequency feature information at a low level and learn the consistency of the image 

structure and texture at a high semantic level. These approaches can be broadly divided into 

single stage inpainting and progressive image inpainting. Moreover, several scholars even 

apply attention modules or a priori knowledge to refine the final image generation. However, 

a common limitation of these methods is that they are not as good as human beings who 

imagine the complete image based on their own subjective ideas or preferences. For example, 

when all facial identifiers of a face image are missing (no valid information is available), 

people who like double eyelids may complete a portrait with big eyes, and people who like 

single eyelids may fix it with the shape of a single eye. This capability is necessary to avoid 

blurred or artificial images when the damaged area is very large. As we know, StyleGAN [2] 

has the ability to do that. It can generate images with different styles by injecting different 

style vectors, and generates less blurred or artificial images even when applied to the field of 

image inpainting. 

        Therefore, we try to apply the pre-trained pSp-SyleGAN [3] as the first step of our 

framework (ISFRNet). However, although pSp-StyleGAN is able to generate very realistic 

images regardless of the size of the corrupted regions in the input image, it is difficult to 

maintain the consistency of the identity features. Thus, we add a second step (IFR) to recover 

identity features and add the third step (SFR) to balance structural features in a global image. 

As demonstrated by [4], networks with small receptive fields are more effective in repairing 

local structures and textures, while networks with large receptive fields are more effective in 

repairing details and structures over long distances. Most of the identity features belong to the 

local structure and texture, so the identity feature recovery network (IFR) is designed as a 

shallow network with a small receptive field, and structure feature repair (SFR) is designed as 

a large receptive field based on U-Net [5]. Furthermore, we also introduce a weighting 

mechanism to balance the input structure feature in the third step. 

        In summary, the contributions of our paper are summarized in the following three points: 

A. We apply two refinement networks with different receptive fields for face identity 

recovery and global structure repair, respectively. 

B.  A U-net model with large receptive fields is adapted into a network with two encoders 

that extract the structural features of different images and inject them into a decoder 

for image generation. 
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C. We propose a weighting mechanism and apply it in the third step. The aim is to balance 

the input structural features while attenuating the negative impact of missing regions 

on global structural repair. 

2. Related Work 

2.1 Single-stage Inpainting 

        Most previous proposed single-stage inpainting models are based on an encoder-decoder 

or GAN structure, such as [6], [7]. The encoder extracts the features of the input image and 

maps them to the latent space, while the decoder expands the compressed feature map step by 

step to recover the size of the original image. Then, the L2 reconstruction loss function is used 

to reconstruct the structural features, and the adversarial loss function is used to make the 

generated images look more realistic. However, in this type of approach, the image features 

are mapped to a higher-level latent space, and while the overall structural features of the image 

are better extracted, much of the detailed feature information is lost. 

        Therefore, some scholars have tried to change the standard structure of the encoder-

decoder to a pyramid structure [8], mutual encoder-decoder [9]. The Pyramid-Context Encoder 

Network (PEN-Net）was proposed by Zeng et a. [8]. The multi-scale encoder extracts features 

while using the extracted high-level features to guide the low-level feature generation. By 

skipping connections, similar features are learned by the attention transfer network and 

decoded together with latent features to obtain the restored image. This design not only 

improves training speed but also produces more realistic test images. Mutual Encoder-Decoder 

was introduced by Hongyu Liu et al. [9]. This model performs multi-scale hole filling in the 

feature space while equalizing the output features in the channel and spatial domains. The 

equalized features contain consistent structural and textural features at different feature levels. 

It is good to consider the consistency of the structure and texture during the image inpainting 

process to produce a more logical and detailed structure and texture. There are also some 

modules that can be used to enhance the similarity between pixels or to strengthen the 

constraint on the estimated deep pixels by using the correlation between adjacent pixels [10]. 

2.2 Progressive Inpainting 

        Given that convolutional neural networks are not good at modeling the correlation 

between long-term distant contextual information and damaged holes. Therefore, some 

researchers have proposed coarse-to-fine multi-stage network architectures for progressive 

image inpainting. The methods related to progressive inpainting can be used for both 

traditional low-resolution image inpainting and high-resolution image inpainting [10]. For 

progressive inpainting, some attention modules such as contextual attention [11] and coherent 

semantic attention [12] are often used. Unlike single-stage painting, these methods tend to 

generate a coarse or low-resolution image, which is then further refined or generated in high 

resolution. However, both single-stage painting and coarse-to-fine progressive painting 

methods often do not take full advantage of a priori knowledge for accurate texture inference.  

        Therefore, many improved methods have been proposed to guide GAN network models 

for refined image generation by considering image contours and adding structural priors. This 

results in reconstructed images with a more reasonable texture structure and accurate semantic 

information. There are two main categories of image inpainting methods based on prior 

knowledge: contour edge guided image inpainting [13], [14] and generative prior guided 

image inpainting [15], [16]. So, it is not rare that some additional generation tools or pre-
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trained models are used to assist in the refinement of images. For example, DeepCut is used 

to predict a salient object mask [13], and the Canny edge detector is used to generate the edge 

map of the input image [14]. In general, the existing inpainting techniques based on deep 

learning are divided into single-stage inpainting and progressive inpainting. With the 

development of deep learning in the field of image inpainting, multi-stage network 

architectures have replaced single-stage models as the mainstream. Although the multi-stage 

model improves the problem of long-term distant information correlation that cannot be 

overcome by the single-stage, there is still room for further improvement. 

3. Proposed Method 

        Our proposed method is a three-stage network consisting of a pre-trained pSp-styleGAN 

[3], an identity feature recovery network (IFR) and a structural feature refinement network 

(SFR). As shown in Fig. 1, we use the pre-trained pSp-styleGAN as the first step of the model. 

IFR and SFR are used as the second and third steps of the model, respectively. As the input 

images are injected, the pSp-styleGAN will synthesize a coarse result image with a rich 

structure. Then, IFR further recovers the face identity feature from the rough results. Finally, 

SFR extracts and repairs the overall structural features of the image. 

 

 
Fig. 1. Overview of ISFRNet 
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3.1 Stage One: Pretrained pSp-StyleGAN 

        The original pSp-StyleGAN is based on a standard pyramidal encoder (pSp) that 

generates a series of style vectors directly and then injects them into a pre-trained StyleGAN 

generator. pSp is used to extract a total of 18 target styles with ResNet as the backbone. 0-2 

styles are extracted from the small feature map, 3-6 styles are from the medium feature map, 

and then 7-8 styles are extracted from the large feature map. Then, each style generates 512 

vectors through an intermediate mapping network, which is injected into StyleGAN through 

affine transformations. Finally, StyleGAN generates the corresponding image based on the 

styles extracted from the input image. This model can solve a wide range of image-to-image 

translation tasks such as multi-modal conditional image synthesis, facial frontalization, 

inpainting, and super-resolution. However, when we apply this model to image inpainting, we 

find that although pSp-StyleGAN can generate complete and realistic images, it is difficult to 

maintain the same identity as the input image, as shown in the images of Fig. 2 (c). Thus, we 

add two refinement networks based on the pSp-StyleGAN model to refine the identity feature 

and structural feature, respectively.  
 

 
Fig. 2. Examples of the output image for each stage 

 

3.2 Stage Two: IFR 

        Since the identity feature consists of the local structure and textures, we apply a shallow 

network (IFR) with a small receptive field in the second step (see Fig. 3). The purpose is to 

solve the problem where pSp-StyleGAN cannot maintain the identity feature in the first stage. 

The IFR generator is composed of an input layer, two downsampling layers, four residual 

blocks, two upsampling layers, and an output layer (Tanh as activation). D1 and D2 are depicted 

in Fig. 4 as discriminators for IFR and SFR, respectively. They are composed of 5 

convolutional blocks, where the first four blocks consisting of a convolutional layer, spectral 

normalization, the LeakyReLU. For the last block, we use a sigmoid for activation. We focus 

on repairing the information in the missing regions while restoring the identity features of the 

input image. The output images of IFR are shown in Fig. 2 (d). As we can see, compared to 

the results of pSp-StyleGAN, the identity features and information within the mask of the 

image are restored by IFR. 
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Fig. 3. The network architecture of the IFR generator, where k is the kernel size, n is the number of 

channels and s is the stride for each convolutional layer. 

 

 
Fig. 4. The architecture of the D1 and D2 discriminator. 

 

3.3 Stage Three: SFR 

        In the second stage, we recover the identity features of the image and some detailed 

features within the mask. To further refine the structural features of the output image from the 

second stage, we propose SFR, the architecture of which is depicted in Fig. 5. SFR is based 

on the original U-Net model by splitting the original encoder into two encoders and then 

connecting a decoder. The two encoders extract the structural features of the II image and IIFR 

image respectively, and then generate the final output image with decoder DF. A weighting 

mechanism is proposed in a part of the skip connection between the two encoders and the 

decoder. The available structural features in the input image decrease as the missing region 

increases. So, this mechanism is designed to be inversely proportional to the area of the 

missing region and then multiplied by matrix multiplication with the feature map of the input 

image to reduce the weight. This mechanism is demonstrated in (1), which is designed to be 

simple but effective: 

ℱ𝑖
𝐸 = 𝐶𝑜𝑛𝑐𝑎𝑡(

1

𝑁𝑀
⊙ ℱ𝑖

𝐸𝐼 , ℱ𝑖
𝐸𝐶 )      (1) 

 

Here, ⨀ is the element-wise product operation,  ℱ𝑖
𝐸𝐼  and ℱ𝑖

𝐸𝐶are the feature maps extracted 

from the two encoders respectively, and 𝑁𝑀 is the number of elements in the missing region. 
 

 
Fig. 5. The architecture of the SFR generator.  
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3.4 Loss Function 

        The second stage of the framework (IFR) is trained to recover the identity features of the 

face while generating better details of the missing parts. We use the reconstruction and 

adversarial losses. For the reconstruction loss (2), we use the L1 loss: 

 

𝐿𝑟𝑒𝑐
𝐼𝐹𝑅 = ‖(𝐼𝑜 − 𝐼𝑔𝑡)⨀𝑀‖

1
     (2) 

 

Here, Io is the output image from the IFR, Igt is the ground truth image, ⨀ is the element-wise 

product operation, and the M is a binary mask with an internal pixel value of 1 and an external 

pixel value of 0. The adversarial loss is defined in (3) and (4): 

 

𝐿𝐷1
=  𝐸𝐼𝑔𝑡

[log𝐷1(𝐼𝑔𝑡)] + 𝐸𝐼𝑐
log[1 − 𝐷1(𝐼𝑐)]    (3) 

 

𝐿𝑎𝑑𝑣
𝐷1 = 𝐸𝐼𝑐

log[1 − 𝐷1(𝐼𝑐)]     (4) 

Here, Ic is used as an input image of IFR. The total loss function for IFR training is defined as 

(5): 

 

𝐿𝑡𝑜𝑡𝑎𝑙
𝐼𝐹𝑅 = 𝜆1𝐿𝑟𝑒𝑐

𝐼𝐹𝑅 + 𝜆2𝐿𝑎𝑑𝑣
𝐷1      (5) 

 

For our experiments, we use λ1 = 1 and λ2 =0.1. 

        The third stage of the framework (SFR) is trained to further reconstruct the structural 

features of the full image. We need to ensure both structural integrity and clarity. Therefore, 

in addition to using the same adversarial loss function as the IRF, we add the reconstruction 

without the mask constraint, perceptual, style, and total variation (TV) loss functions. As with 

most image inpainting models, the perceptual and style loss functions we can apply are defined 

in VGG-16 and pre-trained on the ImageNet dataset. The reconstruction, perceptual and style 

loss can be written as (6), (7) and (8) respectively: 

 

𝐿𝑟𝑒𝑐
𝑆𝐹𝑅 = ‖𝐼𝑜𝑢𝑡𝑝𝑢𝑡 − 𝐼𝑔𝑡‖

1
     (6) 

 

𝐿perceptual = ∑
‖Ψ𝑝

𝐼𝑜𝑢𝑡−Ψ𝑝

𝐼𝑔𝑡
‖

1

𝑁
Ψ𝑝

𝐼𝑔𝑡

𝑃−1
𝑝=0      (7) 

 

𝐿style = ∑
‖Κ𝑝((Ψ𝑝

𝐼𝑜𝑢𝑡)(Ψ𝑝
𝐼𝑜𝑢𝑡)−(Ψ𝑝

𝐼𝑔𝑡
)(Ψ𝑝

𝐼𝑔𝑡
))‖

1

𝐶𝑝𝐶𝑝

𝑃−1
𝑝=0     (8) 

 

Here, 𝐼𝑜𝑢𝑡𝑝𝑢𝑡 is the final output image from the third step of the framework, Ψ𝑝
𝐼∗denotes the 

activation of the p-th selected pre-trained VGG-16 layer. Here we use the 5th, 10th, and 17th 

layers of VGG-16 for calculations. In the style loss function (Ψ𝑝
𝐼𝑜𝑢𝑡)(Ψ𝑝

𝐼𝑜𝑢𝑡) represents an 

auto-correlation (Gram matrix) is applied to each selected VGG feature map, (𝐶𝑝, 𝐻𝑝, 𝑊𝑝) is 

the shape of Ψ𝑝
𝐼∗ , and Κ𝑝 equals 1 𝐶𝑝⁄ 𝐻𝑝𝑊𝑝 is used for normalization. We also use the total 

variance (TV) loss as a smoothing penalty. It is expressed as (9): 
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𝐿𝑡𝑣 = ∑
‖𝐼𝑜𝑢𝑡

𝑖,𝑗+1
−𝐼𝑜𝑢𝑡

𝑖,𝑗
‖

1

𝑁𝐼𝑜𝑢𝑡
(𝑖,𝑗)∈𝑅,(𝑖,𝑗+1)∈𝑅  + ∑

‖𝐼𝑜𝑢𝑡
𝑖+1,𝑗

−𝐼𝑜𝑢𝑡
𝑖,𝑗

‖
1

𝑁𝐼𝑜𝑢𝑡
(𝑖,𝑗)∈𝑅,(𝑖+1,𝑗)∈𝑅    (9) 

 

Here, R denotes a 1-pixel dilated hole region and 𝑁𝐼𝑜𝑢𝑡
 is the number of all elements in final 

output image 𝐼𝑜𝑢𝑡. The full loss function for training of the SFR can be expressed by the 

formula (10): 

 

𝐿𝑡𝑜𝑡𝑎𝑙
𝑆𝐹𝑅 = 𝜆3𝐿𝑟𝑒𝑐

𝑆𝐹𝑅 + 𝜆4𝐿𝑝𝑒𝑟 + 𝜆5𝐿𝑠𝑡𝑦 + 𝜆6𝐿𝑡𝑣 + 𝜆7𝐿𝑎𝑑𝑣
𝐷1     (10) 

 

Here, λ3, λ4, λ5, λ6, and λ7 are equal to 50, 120, 0.05, 0.1, and 1, respectively. 

4. Experimental Results and Analysis 

4.1 Experimental Data and Platform 

       During training, we scale the pixel values of the mask between [0, 1]. We train our model 

on an NVIDIA TITAN Xp GPU with an image resolution of 256 × 256 and a batch size of 1. 

We use Adams optimization with default momentum parameters and an initial learning rate of 

1 × 10-4. 

      We evaluate our network on a publicly available face dataset CelebA [17]. The CelebA is 

a dataset that includes 202,599 face images. We randomly select 182,339 images for training 

and 20,260 images for testing. For the mask dataset, we use the test set of NVIDIA Irregular 

Mask Dataset [18] to randomly combine with our CelebA training and test sets. This mask 

dataset contains 6000 masks with border constraints and 6000 irregular masks without border 

constraints, and it is evenly divided into six categories (0%-10%, 10%-20%, 20%- 30%, 30%-

40%, 40%-50%, and 50%-60%) based on the size of the random missing region. Additionally, 

all images are resized to 256×256. We use the following metrics to measure the quality of our 

results: 1) structural similarity index (SSIM), 2) peak signal-to-noise ratio (PSNR), 3) L1 Loss 

and 4) learned perceptual image patch similarity (LPIPS) [19]. The higher the PSNR and SSIM 

values the better, however L1 Loss and LPIPS are the smaller the value the better. 

4.2. Ablation Experiment  

      To clearly illustrate and analyze the impact of each stage of our three-stage deep network 

on the generation of the final image, we perform three ablation experiments. 

4.2.1. Experiment 1: pSp + IFR 

      Experiment 1 was performed without using the SFR refinement network. The architecture 

of the compared method used pSp-StyleGAN as the first stage and only IFR as the second 

stage for identity feature recovery. The dataset used for training and processing remain the 

same as our ISFRNet. However, for the loss function, unlike the reconstructed loss function 

used in ISFRNet, we remove the mask constraint. This causes the obtained images to be more 

complete for a more objective and intuitive comparison. The purpose of Experiment 1 is to 

demonstrate the refinement effect of SFR on the structural features of the images. 

      Fig. 6 shows a visualization comparison of the results in Experiment 1. In the first row of 

Fig. 6, our model performs well on the contours of the teeth and the left eye, as compared to 

the pSp + IFR results in Fig. 6 (b). The second row also shows that our model achieves better 

performance in repairing the mouth structure of the portrait and the recessed areas of the face. 
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For convenience, we selected 20%-40% and 40%-60% masked images for PSNR and SSIM 

score evaluation. These results are shown in Table 1. The PSNR and SSIM scores of our 

model are significantly higher than the network with StyleGAN and IFR. 
 

 
Fig. 6. Examples of the output image for pSp+IFR and ours 

 

 

Table 1. Quantitative comparisons [ PSNR(dB)/SSIM ] between the compared methods and our 

approach 

Mask pSp [3] IFR SFR Weighting PSNR SSIM 

20-40% √ √   27.81 0.902 

40-60% 17.77 0.682 

20-40% √  √  17.76 0.683 

40-60% 13.61 0.367 

20-40% √ √ √  26.73 0.915 

40-60% 22.05 0.792 

20-40% √ √ √ √ 28.12 0.942 

40-60% 13.31 0.840 

 

4.2.2 Experiment 2: pSp + SFR 

      Experiment 2 was performed without using IFR to refine the network. The overall 

framework used pSp-StyleGAN as the first stage and only SFR as the second stage. The 

processing of data, loss functions and training settings are the same as the processing for the 

ISFRNet. The input image II is injected into the pre-trained pSp-StyleGAN to generate the 

image Ic. Then, the structure features of II and Ic are extracted by EI and EC in SFR, respectively. 

Finally, a decoder DF is connected to generate the result images, as Fig. 7 (b). Since there is 

no SFR refinement, the result images are not detailed enough in terms of the texture and the 

identity feature of the image is not well recovered, especially in the first row. We apply PSNR 

and SSIM scores to evaluate the models. These results are shown in the fourth column of Table 

1. 
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Fig. 7. Examples of output images for pSp + SFR and our approach 

 

4.2.3 Experiment 3: pSp + IFR + SFR (without weighting mechanism) 

      Experiment 3 was performed by removing our weighting mechanism, but without 

changing any other conditions. The goal of this experiment is to verify whether our weighting 

mechanism is able to balance the structural features extracted between the two encoders, thus 

reducing in the negative impact of the missing regions. Fig. 8 and Table 1 show the 

visualization and quantitative comparison results, respectively. Fig. 8 (b). remains partially 

masked with shadows and blurring due to the lack of weight balance of the feature map by the 

weighting mechanism. In Table 1, the PSNR and SSIM scores of our model are also much 

higher than those of the model without the weighting mechanism.      
 

 
Fig. 8. Examples of output images without a weighting mechanism and our approach. 
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4.3. Comparison with the State-of-the-art Method:  

      In Experiment 4, we compared our method with three other coarse-to-fine painting 

methods. The visualization comparison is provided in Fig. 9. The first row of Fig. 9 shows a 

scenario where the missing area of the input image is very large. We can observe that our 

method is able to maximize the complementary structural features while retaining good 

identity features. When the missing area of the input image is relatively small as in the second 

and third rows of Fig. 9, the result images of our method are much clearer and detailed with 

almost no artificial traces, as compared to LGNet and MADF model. The results of the 

quantitative comparison are shown in Table 2, We can see that our model is competitive in 

terms of PSNR, SSIM and L1 Loss. Although, when the missing region is relatively small, our 

model shows comparable performance compared to the Edgeconnect (EC) model. But, if we 

compare the results in the first row of Fig. 9, we can see that EC generates a very serious 

artificial structural feature, while our model generates a relatively complete structural feature. 

More comparisons with EC model are shown in Fig. 10. Our model focuses on balancing the 

refinement of structure and identity features to produce a more complete structure while 

maintaining identity consistency as much as possible. Meanwhile, it cannot be ignored that 

our model is not as good as EC and LGNet model in LPIPS measurement. Therefore, we 

measured and compared the LPIPS scores of the images separately. In Fig. 9, the LPIPS scores 

of the three output images from LGNet are 0.163, 0.035, and 0.065. The LPIPS scores of the 

three outputs from EC model are 0.135, 0.202, and 0.121. The three outputs from our model 

are 0.181, 0.081, and 0.093, respectively. We are able to observe that the results of our model 

are visually better than other models, but the LPIPS score is bad. In fact, whether the image is 

more realistic or not does not depend entirely on the LPIPS score. Since our model suffers 

from a certain degree of blurring, when the image is fed into the pre-trained Alex network to 

calculate the LPIPS distance, the blurred part will largely affect the calculation of LPIPS [19]. 

 

 
Fig. 9. Visualization comparison of our approach (ISFRNet) with LGNet [3], MADF [16], EC [14]. 
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Fig. 10. Visualization comparison of our approach and EC [13] in the case of very large missing 

regions. 

 

Table 2. Quantitative comparisons [ PSNR(dB)/SSIM/ L1 Loss/ LPIPS ] 

 

 

 Mask pSp [3] LGNet [4] MADF [20] EC [14] Ours 

PSNR 20%-40% 18.66 27.99 22.70 28.11 28.12 

40%-60% 17.53 22.93 19.72 22.83 23.31 

SSIM 20%-40% 0.651 0.939 0.874 0.946 0.942 

40%-60% 0.581 0.832 0.764 0.836 0.840 

L1 Loss 20%-40% 0.113 0.020 0.043 0.029 0.015 

40%-60% 0.151 0.063 0.071 0.067 0.053 

LPIPS 20%-40% 0.102 0.074 0.113 0.054 0.090 

40%-60% 0.205 0.144 0.183 0.126 0.177 
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5. Conclusion 

In this paper, we present a three-stage adversarial network for face image inpainting. The first 

step is based on the pSp-StyleGAN model, which generates very detailed and realistic images 

regardless of the size of the corrupted area of the injected images. This ability simulates how 

people can imagine a complete image according to their own preferences when they look at 

an image with a large missing region. However, when the missing area is relatively small (i.e., 

valid information is sufficient), it is more important to keep the identity feature of the face. So, 

we apply the IFR and SFR as the refinement networks for the second and third stages.  The 

initial input image is reused in SFR. However, as the area of the missing regions in the input 

image increases, the available effective structural information gradually decreases, so a 

weighting mechanism is applied to balance the weights of the features in the input image. The 

experimental results show that our network is effective and has outstanding and superior 

performance compared to other multi-refinement models. Although the problem of blurring 

still exists when the missing area is large. I believe that in the future, it is necessary to further 

improve the model's ability to use the valid pixel information and make the model generate 

new information autonomously. 
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